
Path Planning Algorithms for Skid-to-Turn
Unmanned Aerial Vehicles

Nobuhiro Yokoyama∗ and Yoshimasa Ochi†

National Defense Academy, Yokosuka 239-8686, Japan

DOI: 10.2514/1.41822

This study describes two types of algorithms for skid-to-turn unmanned aerial vehicles to plan paths between two

waypoints under constant wind conditions. The first type of algorithm is a rigorous optimization algorithm based on

the Euler–Lagrange formulation with analytical integration of the path. The second type of algorithm is a fast

algorithmdescribing the path by two circular arcs connected by a line segment or another circular arc in the airmass

frame,which is similar to theDubins path. The latter algorithm is developed for actual airborne application, whereas

the former algorithm is developed to check the quasi-optimality of the path calculated by the latter algorithm. We

present a convergence proof of the latter algorithm under certain assumptions and its quasi-optimality in

comparisonwith the former algorithm. Furthermore, the computational efficiency and the convergence reliability of

the latter algorithm are demonstrated through numerical examples.

Nomenclature

ac = intermediate variable to calculate a� and a ,
N2 �m � s

a� = effectiveness of side-force control surface to
sideslip angle

a� = effectiveness of roll angle to heading rate, 1=s
a = effectiveness of side-force control surface to

yaw angle, 1=s
a�, b� = center of circular arc, m
cf, cv = coefficients of forces, N
cp, cr = coefficients of moments, N �m � s
c1, c2, c3, c4 = intermediate variables to calculate the switching

time
D = drag, N
d = distance from terminal waypoint to interception

point in the air mass frame, m
Ff, Fv = forces generated by the side-force control

surface and fixed vertical fin, N
g = gravitational acceleration, m=s2

H = Hamiltonian
Ixx, Iyy, Izz = moments of inertia, kg �m2

L = counterclockwise circular arc with �r ���rmax

l��� = path length, m
lf = difference of x coordinate between action point

of Ff and center of gravity, m
lv = difference of x coordinate between action point

of Fv and center of gravity, m
M�x� = function that maps x to x� 2n� by using an

integer n such that 0 � x� 2n� � 2�, rad
Mzp,Mzr = yawing moments generated by roll and yaw

damping, N �m
m = mass, kg
Pk = intermediate variable to calculate the path

p, q, r = angular velocity components in the body frame,
rad=s

R = clockwise circular arc with �r � �rmax

S = line segment with �r � 0
Tp�d� = time for the vehicle to arrive at the point of

interception, s
Tvt�d� = time for the virtual target to arrive at the point of

interception, s
t = time, s
u, v, w = airspeed components in the body frame, m=s
V = magnitude of the airspeed, m=s
wx, wy = wind components in the inertial frame, m=s
x, y = position of vehicle in the inertial frame, m
~x, ~y = position of vehicle in the air mass frame, m
� = angle of attack, rad
� = sideslip angle, rad
�̂ = negative value of the maximum sideslip angle

(i.e., �̂≜ �a��rmax), rad
� = intermediate variables to calculate the path

length
�r = deflection angle of the side-force control

surface, rad
��r = �r corresponding to minimum Hamiltonian, rad
��, �� = intermediate variables to calculate the

intersection point, m
	x, 	y, 	 = adjoints, s=m, s=m, s=rad

 = minimum turn radius of the vehicle [i.e.,


≜ V=�ja j�rmax�], m
 , �, � = Euler angles, rad
�� = angle perpendicular to  , rad

Subscripts

c1, c2 = intersection point
e = value at terminal time
f = specified terminal condition or circular arc

approaching to virtual target
k = value at the beginning of the arc or segment
l = anticlockwise circular arc with �r ���rmax

m = middle circular arc or line segment
max = maximum value
r = clockwise circular arc with �r � �rmax

", "1, "2, "3 = small positive values, m
"4 = small value, m

, v = arc lengths at singular point, m
� = length of circular arc within the range

of 	0; �

, m
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� = length of circular arc within the range of
	�
; 2�

, m

0 = specified initial condition or circular arc starting
from the initial waypoint

Introduction

A WIDE variety of small unmanned aerial vehicles (UAVs) have
been developed over the past 10 years, and the range of appli-

cation of suchUAVs is expanding,mainly in thefields of surveillance
and reconnaissance [1]. The present study focuses on small skid-to-
turn UAVs, which turn in flight by deflecting control surfaces that
generate side forces, thereby directly generating centripetal force
without banking. By virtue of skid-to-turn procedures, a vehicle can
maintain wings-level flight during a turn, affording the following
advantages:

1) The reception of Global Positioning System signals and the
reception/transmission of data link signals are more stable than in
bank-to-turn vehicles, in which these signals are sometimes blocked
by a banked wing.

2) It is possible to design simpler control laws of the camera angles
for capturing a target in skid-to-turn vehicles, because the skid-to-
turn control mechanism has less of an effect on the line of sight from
the camera to the target in comparison with the bank-to-turn control
mechanism. However, it should also be noted that techniques have
been developed to incorporate the control laws of camera angles into
the flight dynamics of bank-to-turn vehicles [2,3].

The use of skid-to-turn, rather than bank-to-turn, flight procedures
necessarily alters the kinematics of a UAV and therefore influences
the optimal path planning, an important function of UAVs in
achieving autonomous operations.Optimal path planning is typically
formulated as the process of finding the two-dimensional minimum-
time path between two or more waypoints, taking the kinematics of
the vehicle into account. The problem of the two-dimensional
minimum-time path from an initial position and orientation to a final
position and orientation in the no-wind case has been solved
analytically by geometric arguments [4] and by optimal control
theory [5,6]. The minimum-time path in the no-wind case is often
referred to as the Dubins path and is described by a set of two circular
arcs connected by either a line segment or an additional circular arc
that is tangent to both of these arcs. The Dubins path has been
modified, and its application has been extended to cases that include a
vehicle that moves both forward and backward [6,7], constant wind
[8] and wind vector fields [9], multiple waypoints [10], and obstacle
avoidance [11]. If these considerations are applied to the path
planning of bank-to-turn UAVs, the kinematics are given by the
following:

_x� V cos �wx (1)

_y� V sin � wy (2)

_ � a�� (3)

j�j � �max (4)

where turn coordination is assumed and additional dynamics are
neglected. However, Eqs. (1–4) are not valid for skid-to-turn UAVs.
As will be shown in the next section, an effect of the deflection of the
side-force control surface �r appears in the kinematics of skid-to-turn
UAVs, and hence the direction of the inertial velocity vector may
change instantaneously. Thus, some kinks may occur in the
horizontal paths as opposed to the smoothness in the Dubins paths.
To the best of the authors’ knowledge, practical path planning
algorithms that take into consideration the inherent kinematics of
skid-to-turn UAVs have not been investigated, although the guidance
and control laws for skid-to-turn missiles considering their agile
dynamics [12–14] and the navigation of skid-to-turn UAVs using
camera vision [15] have been investigated. Therefore, in the present

study, we describe two new types of path planning algorithms that
calculate the paths between two waypoints under constant wind
conditions. One type is a rigorous optimization algorithm based on
the Euler–Lagrange formulation and the minimum principle with
analytical integration of the path. The other type is a fast algorithm
describing the path by two circular arcs connected by a line segment
or another circular arc in the air mass frame, which is similar to the
Dubins path. The latter algorithm is developed for actual airborne
application, whereas the former algorithm is developed to check the
quasi-optimality of the path calculated by the latter algorithm. We
show a convergence proof of the latter algorithm under certain
assumptions and its quasi-optimality in comparison with the former
algorithm. Furthermore, we seek to demonstrate the computational
efficiency and the reliability of the convergence of the latter algo-
rithm through numerical examples.

Kinematics of a Skid-to-Turn UAV

In the present section, the equations describing the kinematics of a
skid-to-turn UAVare derived. The variables and coordinate systems
in the horizontal plane are shown in Fig. 1. For the sake of simplicity,
we assume the following:

1) Themotion of the vehicle is constrained in the horizontal plane.
2) Thevehicle is turned by side forcewhilemaintaining a roll angle

of zero.
3) The sideslip angle is sufficientlymoderate to prevent directional

instability.
4) The rates of change of the velocity and angular velocity compo-

nents are negligible.
The preceding assumptions are described by the following

equations:

_�� 0; �� �; �� 0; j�j � 1

_u� _v� _w� _p� _q� _r� 0; V � const (5)

Using these equations, let us approximate the equations of motion.
The equations of the angular velocities p, q, and r and the longi-
tudinal velocities u and w are expressed as follows [16]:

p� _�� _ sin ��� _ sin� (6)

q� _� cos�� _ sin� cos �� 0 (7)

r�� _� sin�� _ cos� cos � ’ _ cos� (8)

u� V cos� cos� ’ V cos� (9)

w� V sin� cos� ’ V sin� (10)

The differential equations with respect to v and r can be
approximated by the following algebraic equations:

β

ψ

x

y [ ]w wx y
T

[ ]x y TV

rδ

D

Fv / 2

Fv / 2

Ff

u

v

M Mzp zr,
. .

Fig. 1 Variables and coordinate systems in the horizontal plane.
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_v��ru� pw� g sin� cos �� �Ff � Fv �D sin��=m� 0

(11)

_r� fFflf � Fvlv �Mzp �Mzr � �Iyy � Ixx�pqg=Izz � 0 (12)

The forces and moments can be approximated as follows:

Ff � cff�r � � � tan�1�lfr=V�g ’ cf��r � � � lf _ cos�=V�
(13)

Fv ��cvf�� tan�1�lvr=V�g ’ �cv��� lv _ cos�=V� (14)

Mzp ��cpp� cp _ sin� (15)

Mzr ��crr ’ �cr _ cos� (16)

Note that the approximations in Eqs. (13) and (14) are based on the
additional assumptions jlfr=Vj � 1 and jlvr=Vj � 1. Substituting
Eqs. (5–10) and (13–16) into Eqs. (11) and (12), and solving them

with respect to _ and �, we obtain

_ � a �r (17)

�� a��r (18)

where

a � cffcvlv � �cv �D�lfg=ac (19)

a� � cfflfmV � cvlv�lf � lv� cos�=V � cr cos�� cp sin�g=ac
(20)

ac � fmV � �cflf � cvlv� cos�=Vg�cflf � cvlv�
� �cf � cv �D�	f�cfl2f � cvl2v�=V � crg cos� � cp sin�


(21)

If the airspeed, the dynamic pressure, and the angle of attack at a
specified trim condition are given, then a and a� are determined.

On the other hand, the two-dimensional differential equations of
the vehicle position are given by

_x� V cos� � �� � wx (22)

_y� V sin� � �� � wy (23)

Substituting Eq. (18) into Eqs. (22) and (23) yields

_x� V cos� � a��r� �wx (24)

_y� V sin� � a��r� � wy (25)

In addition, the following constraint for the maximum deflection
angle of the side-force control surface is enforced:

j�rj � �rmax (26)

In the path planning algorithms described later herein, Eqs. (17) and
(24–26) are adopted as the equations of the kinematics of a skid-to-
turn UAV. Because of the term a��r, which appears in the
trigonometric functions of Eqs. (24) and (25), the kinematics of the

skid-to-turn UAV are different from those of the bank-to-turn UAV
[Eqs. (1–4)] (i.e., the direction of the inertial velocity vector 	 _x _y 
T
changes instantaneously upon deflection of the side-force control
surface �r). Thus, the optimal paths of the skid-to-turn UAV are
different fromDubins paths. On the other hand, ifa� is set to zero and
�r and a are replaced by � and a�, respectively, then Eqs. (17) and
(24–26) are equivalent to Eqs. (1–4). Therefore, the same path
planning algorithm can be applied to bank-to-turn vehicles.

In the following sections, we consider the minimum-time path
between two waypoints with the kinematics given by Eqs. (17) and
(24–26). The boundary conditions at the initial waypoint and the
terminal waypoint are given as (x0, y0,  0) and (xf , yf ,  f),
respectively. The wind vector 	wx wy
T is assumed to be constant
during the flight between these twowaypoints. In this study, we only

consider the case in which
������������������
w2
x � w2

y

q
< V.

Algorithm for Rigorous Calculation of Optimal Path

In this section, the rigorous optimization algorithm is described
based on the Euler–Lagrange formulation [17]. The Hamiltonian H
of the minimium-time problem is defined by

H � 1� 	xfV cos� � a��r� �wxg � 	yfV sin� � a��r�
� wyg � 	 a �r (27)

The differential equations for the adjoints are given as

_	 x ��
@H

@x
� 0 (28)

_	 y ��
@H

@y
� 0 (29)

_	  ��
@H

@ 
� 	xV sin� � a��r� � 	yV cos� � a��r� (30)

The condition of the minimum Hamiltonian with regard to the
control input is given as follows:

@H

@�r
��	xVa� sin� �a��r��	yVa� cos� �a��r��	 a �0

(31)

@2H

@�2r
> 0 (32)

If

ja 	 =�Va�
�����������������
	2x � 	2y

q
�j � 1

there is a solution to Eqs. (31) and (32); that is,

�� r �
1

a�

�
� � tan�1

�
	y
	x

�
� � � sin�1

�
a 	 

Va�

�����������������
	2x � 	2y

q ��

(33)

where the range of the arcsine function is 	��=2; �=2
 and that of the
arctangent function is chosen such that ��r is within the range of
	��; �
. Consequently, by invoking the minimum principle [18], the
optimal control input is given as

�r �maxf��rmax;min� ��r; �rmax�g

If

ja 	 =�Va�
�����������������
	2x � 	2y

q
�j> 1

YOKOYAMA AND OCHI 1533



there is no solution to Eq. (31). In this case, either ��rmax or �rmax,
which gives the minimumHamiltonian, is the optimal control input .
To obtain the optimal path, the following boundary conditions must
be satisfied:

xe � xf � 0 (34)

ye � yf � 0 (35)

sinf� e �  f�=2g � 0 (36)

�H�t�te � 1� 	xfV cos� e � a��re� � wxg
� 	yfV sin� e � a��re� � wyg � 	 ea �re � 0 (37)

Although 	x and 	y are time-invariant due to Eqs. (28) and (29), x,
y,  , and 	 are time-variant. Thus, it is necessary to calculate the
time profiles of x, y,  , and 	 under three types of control inputs,

i.e., unsaturated control (�r � ��r), upper-saturated control (�r�
�rmax), and lower-saturated control (�r ���rmax). It is possible to
integrate differential Eqs. (17), (24), (25), and (30) analytically by
applying any of the three types of control input, and hence the
optimal path is described as a set of the following three arcs. We give
only the final result of the analytical integrations:

The arc of unsaturated control (�r � ��r) is given as follows:

x� xk �
	y	 k
	2x � 	2y

"
exp

�
a �t � tk�

a�

�
� 1

#

�
	x	 k

�	2x � 	2y�Pk

2
4

�������������������������������������������������
1 � P2

k expf
2a �t� tk�

a�
g

s
�

��������������
1 � P2

k

q 3
5

�
	x	 k

�	2x � 	2y�Pk
ln

2
4 ��������������

1 � P2
k

p
� 1���������������������������������������������������������

1 � P2
k expf2a �t � tk�=a�g

q
� 1

3
5

�

0
@� V	x�����������������

	2x � 	2y
q �wx

1
A�t � tk� (38)

y� yk �
	x	 k
	2x � 	2y

"
exp

�
a �t � tk�

a�

�
� 1

#

�
	y	 k

�	2x � 	2y�Pk

" �������������������������������������������������
1 � P2

k expf
2a �t � tk�

a�
g

s
�

��������������
1 � P2

k

q #

�
	y	 k

�	2x � 	2y�Pk
ln

2
4 ��������������

1 � P2
k

p
� 1���������������������������������������������������������

1 � P2
k expf2a �t � tk�=a�g

q
� 1

3
5

�

0
@� V	y�����������������

	2x � 	2y
q �wy

1
A�t � tk� (39)

 � � k � sin�1Pk� exp
�
�
a �t� tk�

a�

�
�
�
tan�1

�
	y
	x

�
� �

�

�
�
1 � exp

�
�
a �t � tk�

a�

��
� sin�1

�
Pk exp

�
a �t� tk�

a�

��

�
Pk	expf�a �t � tk�=a�g � expfa �t � tk�=a�g
���������������������������������������������������������

1 � P2
k expf2a �t� tk�=a�g

q
�

��������������
1 � P2

k

p (40)

	 � 	 k exp
�
a �t� tk�

a�

�
(41)

where

Pk �
a 	 k

Va�

�����������������
	2x � 	2y

q (42)

The arc of upper-saturated control (�r � �rmax) is given as follows:

x� xk �
V

a �rmax

	sinf k � a��rmax � a �rmax�t� tk�g

� sin� k � a��rmax�
 �wx�t� tk� (43)

y� yk �
V

a �rmax

	cosf k � a��rmax � a �rmax�t� tk�g

� cos� k � a��rmax�
 � wy�t � tk� (44)

	 � 	 k �
	xV

a �rmax

cosf k � a��rmax � a �rmax�t� tk�g

�
	yV

a �rmax

sinf k � a��rmax � a �rmax�t� tk�g

� 	xV

a �rmax

cos� k � a��rmax� �
	yV

a �rmax

sin� k � a��rmax�

(45)

 �  k � a �rmax�t� tk� (46)

On the other hand, the arc of lower-saturated control (�r ���rmax)
can be obtained by replacing �rmax in Eqs. (43–46) with ��rmax.

Switching from one arc to the other arc occurs when either
��r � �rmax or

��r ���rmax occurs (i.e., when either of the following
equations holds):

1

a�

�
� � tan�1

�
	y
	x

�
� � � sin�1

�
a 	 

Va�

�����������������
	2x � 	2y

q ��
� �rmax

(47)

1

a�

�
� � tan�1

�
	y
	x

�
� � � sin�1

�
a 	 

Va�

�����������������
	2x � 	2y

q ��
���rmax

(48)

An analytical method bywhich to obtain the switching time can be
described as follows: Here, we present the case of switching from
unsaturated control to upper-saturated control. Substituting Eqs. (40)
and (41) into Eq. (47), followed by some manipulation, yields

�1� a2��2rmax�	Pk expfa �t � tk�=a�g
2

� 2c1a��rmax	Pk expfa �t � tk�=a�g
 � �c21 � 1� � 0 (49)

where

c1 ≜
��������������
1 � P2

k

q
� Pkf k � sin�1Pk � tan�1�	y=	x� � �g (50)

From Eq. (49), the switching time t can be calculated as follows:

t� tk �
a�
a 

ln

8>><
>>:
�c1a��rmax 


�����������������������������������
a2��

2
rmax � c21 � 1

q
Pk�1� a2��2rmax�

9>>=
>>; (51)
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Note that the valid solution t must satisfy tk < t � te. Similarly, the
switching time to lower-saturated control can be obtained by
replacing �rmaxin Eq. (51) with ��rmax.

Next, we present the case of switching from upper-saturated
control to unsaturated control. Substituting Eqs. (45) and (46) into
Eq. (47), followed by some manipulation, yields

����������������
c22 � c23

q
sinfa �rmax�t� tk� � tan�1�c3=c2�g � c4 (52)

where

8>>>>><
>>>>>:

c2 ≜ V	a��rmax

�����������������
	2x � 	2y

q
cosf k � tan�1�	y=	x� � a��rmaxg � 	x sin� k � a��rmax� � 	y cos� k � a��rmax�


c3 ≜ V	a��rmax

�����������������
	2x � 	2y

q
sinf k � tan�1�	y=	x� � a��rmaxg � 	x cos� k � a��rmax� � 	y sin� k � a��rmax�


c4 ≜ a 	 k�rmax � 	xV cos� k � a��rmax� � 	yV sin� k � a��rmax�

(53)

The solutions to Eq. (52) are given as follows:

t� tk �
1

a �rmax

�
�tan�1

�
c3
c2

�
� sin�1

�
c4����������������
c22 � c23

p ��

tk �
1

a �rmax

�
� � tan�1

�
c3
c2

�
� sin�1

�
c4����������������
c22 � c23

p ��
(54)

The valid solution t must satisfy tk < t � te. If both of the solutions
satisfy tk < t � te, the smaller solution is the valid solution. The
switching time from lower-saturated control to unsaturated control
can be similarly obtained by replacing �rmax in Eqs. (53) and (54)
with ��rmax.

Based on the arcs and their switching times, as described previ-
ously in analytical form, the rigorous path optimization algorithm
can be described as follows (see also Fig. 2):

Step 1: Initialize 	x, 	y, 	 0, and te.
Step 2: Set k� 0 and t0 � 0. Then, if

ja 	 0=�Va�
�����������������
	2x � 	2y

q
�j � 1

calculate ��r0 from Eq. (33).

Step 3: If

ja 	 k=�Va�
�����������������
	2x � 	2y

q
�j> 1

select the arc of the saturated control that gives minimum H.

Otherwise, select the optimal arc based on ��rk: If ��rk � ��rmax, select

the arc of the lower-saturated control. If ��rk � �rmax, select the arc of
the upper-saturated control. Otherwise, select the arc of unsaturated
control.

Step 4: Calculate the switching time from the current arc to the
other arc. If there is no solution to the switching time equationswithin
�tk; te
, set tk�1 � te. Otherwise, set tk�1 to the calculated switching
time.

Step 5: Calculate xk�1, yk�1,  k�1, and 	 �k�1� at t� tk�1 of the
current arc from the following equations: Eqs. (38–41) in the case of
the unsaturated control, Eqs. (43–46) in the case of the upper-
saturated control, and Eqs. (43–46), replacing �rmax by��rmax in the
case of the lower-saturated control. Subsequently, if

ja 	 �k�1�=�Va�
�����������������
	2x � 	2y

q
�j � 1

calculate ��r�k�1� at t� tk�1 from Eq. (33).
Step 6: If tk�1 � te, go to step 7. Otherwise, increase the index k by

one, and return to step 3.
Step 7: Set xe � xk�1, ye � yk�1,  e �  k�1, 	 e � 	 �k�1�, and

�re �maxf��rmax;min� ��r�k�1�; �rmax�g

Then evaluate the residuals of the boundary condition given by
Eqs. (34–37).

Step 8: If the residuals are sufficiently small, terminate the
algorithm. Otherwise, evaluate the gradients of the residuals with
respect to 	x, 	y, 	 0, and te, and then update 	x, 	y, 	 0, and te by
calculating the corrections by the Newton–Raphson method. Then
return to step 2.

In the preceding algorithm, given the independent variables	x,	y,
	 0, and te, the path is analytically integrated and evaluated at the
boundary condition. This approach is a type of indirect shooting [19],
although indirect shooting usually involves numerical integrations.
Because of the analytical integration, the optimal paths calculated by
the developed algorithm achieve high accuracy. On the other hand,
the convergence of the indirect shooting approach is not robust with
respect to the initial guess of the solution [19]. Thus, the algorithm
developed in this section is not applicable to the online path planning
of UAVs, although it is beneficial for offline use because of its
rigorous optimality. However, other optimization approaches, such
as direct collocation using fast nonlinear programming [20,21] or a
nonlinear receding horizon control approach [22], may be candidates
for online path planning due to their relatively stable convergence.
Nevertheless, their convergence stabilities are still affected by the
initial guesses of the paths. Thus, in the next section, a fast path
planning algorithm for which convergence is assured is described.

Initialize                

Calculate
switching time     

Calculate

Terminate algorithm

?

Calculate residuals

Calculate gradients 
of residuals

Update                   
by Newton-Raphson

method

Converge ?

Set                   
and calculate     

Select optimal arc 
based on      and         

Yes

Yes

No

No

k k:= +1

k t= =0 00,

λ λ λψx y et, , ,0

λ λ λψx y et, , ,0

δ r0

δ rk

tk +1

x yk k k k r k+ + + + +1 1 1 1 1, , , ,( ) ( )ψ λ δψ

t tk e+ =1

H

Fig. 2 Flowchart of the rigorous path optimization algorithm.
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Algorithm for Fast Calculation of Optimal Path
and Proof of Its Convergence

As stated in [8], the path planning problem under constant wind
conditions is generally equivalent to finding a path in the air mass
frame from an initial position and orientation to a final orientation
over a moving virtual target, for which the velocity vector of the
virtual target is opposite to the wind vector (see Fig. 3). With respect
to constant wind conditions, let us first introduce the following
assumption:

Assumption 1: Themagnitude of the constant wind vector satisfies

0<
������������������
w2
x �w2

y

q
< V.

Because the airspeed V is assumed to be constant, the problem is
equivalent to finding d such that Tp�d� � Tvt�d� � 0, where Tvt�d�
can be described as

Tvt�d� � d=
������������������
w2
x � w2

y

q
(55)

Moreover, the terminal condition for the path in the air mass frame is
then specified as

� ~xe; ~ye;  e� � �xf � wxTvt�d�; yf � wyTvt�d�;  f� (56)

Let the subscripts for R, L, and S be the length of the arc or the line
segment. Then let us consider the following proposition:

Proposition 1: For any boundary conditions and wind vector
satisfying Assumption 1, at least one of the following paths,

fRSR;LSL; RSL;LSR; RL�R;RL�R; LR�L; LR�Lg

where �
 � � � 2�
 and 0 � � � �
, can intercept the virtual
target in the air mass frame.

Proposition 1 is a basis for the fast path calculation algorithm
described later. The set of paths covered in Proposition 1 is similar to
that proposed in [8], which consists of six types of Dubins paths and
two types of non-Dubins paths. However, unlike the paths in [8], the
arcs and the line segments constituting the paths in Proposition 1

intersect at an angle �̂, as shown in Fig. 4. This is due to the
kinematics described by Eqs. (24) and (25), which imply that the
direction of the inertial velocity vector 	 _x _y
T changes instanta-
neously upon deflection of the side-force control surface.

As the bases of a proof of Proposition 1,we present several lemmas
and their proofs. Some of the lemmas are extensions of the properties

of the paths proved in [8] to those of the eight paths defined in
Proposition 1.

Lemma 1: RL�R and RL�R (�
 � � � 2�
 and 0 � � � �
)
exist if ��������������������������������������������������������

�afr � a0r�2 � �bfr � b0r�2
q

� 4
 cos �̂

and LR�L and LR�L (�
 � � � 2�
, 0 � � � �
) exist if������������������������������������������������������
�afl � a0l�2 � �bfl � b0l�2

q
� 4
 cos �̂

At each boundary, RL�R� RL�R� RL�
R or LR�L� LR�L�
LR�
L holds.

Proof: Let us consider the case ofRL�R andRL�R. The following
equations for �aml; bml� (i.e., the center of the middle circular arc)
hold geometrically:

�aml � a0r�2 � �bml � b0r�2 � 4
2cos2�̂ (57)

�aml � afr�2 � �bml � bfr�2 � 4
2cos2�̂ (58)

By eliminating bml from Eqs. (57) and (58), we obtain a quadratic
equation in aml, as follows:

f�afr � a0r�2 � �bfr � b0r�2ga2ml � f�afr � a0r�2

� �bfr � b0r�2g�afr � a0r�aml � f�afr � a0r�2�afr � a0r�2

� 2�a2fr � a20r��bfr � b0r�2 � �bfr � b0r�4g=4

� 4
2cos2�̂�bfr � b0r�2 � 0 (59)

From the discriminant of Eq. (59), the necessary and sufficient
condition for the existence of aml and bml, which is equivalent to the
existence of RL�R and RL�R, is��������������������������������������������������������

�afr � a0r�2 � �bfr � b0r�2
q

� 4
 cos �̂

In the case of ��������������������������������������������������������
�afr � a0r�2 � �bfr � b0r�2

q
< 4
 cos �̂

there are two pairs of solutions to Eqs. (57) and (58), which
correspond to the centers of the second circular arcs in RL�R and
RL�R. In the case of��������������������������������������������������������

�afr � a0r�2 � �bfr � b0r�2
q

� 4
 cos �̂

there is a unique solution to Eqs. (57) and (58), which corresponds to
the boundary case:RL�R� RL�R� RL�
R. By permutingR andL,
the same arguments hold for LR�L and LR�L.

Lemma 2: RSL exists if�������������������������������������������������������
�afl � a0r�2 � �bfl � b0r�2

q
� 2
 cos �̂

initial waypoint

terminal waypoint

inertial path

path in 
air mass frame 

point of interception d

[ , ]− −w wx y
T

( , , )f f fx y ψ

( , , )x y0 0 0ψ

Fig. 3 Equivalent problem of interception in the air mass frame.
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Fig. 4 Examples of paths of the fast algorithm (RSR, RSL, RL�R, and RL�R).
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and LSR exists if�������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

At each boundary, RSL� RS0L or LSR� LS0R holds.
Proof: Let us consider the case of RSL. The intersection point
� ~xc1; ~yc1� between R and S geometrically satisfies the following
equations:

� ~xc1 � a0r�2 � � ~yc1 � b0r�2 � 
2 (60)

� ~xc1 � a0r�f ~xc1 � �a0r � afl�=2g � � ~yc1 � b0r�f ~yc1
� �b0r � bfl�=2g � tan �̂	f ~xc1 � �a0r � afl�=2g� ~yc1 � b0r�
� f ~yc1 � �b0r � bfl�=2g� ~xc1 � a0r�
 � 0 (61)

By eliminating ~yc1 from Eqs. (60) and (61), we obtain a quadratic
equation in ~xc1 as follows:

��20 � �20�� ~xc1 � a0r�2 � 2
2�0� ~xc1 � a0r� � 
2�
2 � �20� � 0

(62)

where

�0 ≜ f�bfl � b0r� � tan �̂�afl � a0r�g=2

�0 ≜ f�afl � a0r� � tan �̂�bfl � b0r�g=2
(63)

From the discriminant of Eq. (62), the necessary and sufficient
condition for the existence of � ~xc1; ~yc1� is�������������������������������������������������������

�afl � a0r�2 � �bfl � b0r�2
q

� 2
 cos �̂

The valid solution to Eq. (62) is given as follows:

~x c1 � a0r � 
 �

�0 � �0

��������������������������
�20 � �20 � 
2

p
�20 � �20

~yc1 � b0r � 
 �

�0 � �0

��������������������������
�20 � �20 � 
2

p
�20 � �20

(64)

Similar arguments hold for � ~xc2; ~yc2�, which is the intersection point
of S and L on RSL; the necessary and sufficient condition for the
existence of � ~xc2; ~yc2� is�������������������������������������������������������

�afl � a0r�2 � �bfl � b0r�2
q

� 2
 cos �̂

and the valid point � ~xc2; ~yc2� is given as follows:

~x c2 � afl � 
 �

�f � �f

���������������������������
�2f � �2f � 
2

q
�2f � �2f

~yc2 � bfl � 
 �

�f � �f

���������������������������
�2f � �2f � 
2

q
�2f � �2f

(65)

where

�f ≜ f�b0r � bfl� � tan �̂�a0r � afl�g=2

�f ≜ f�a0r � afl� � tan �̂�b0r � bfl�g=2
(66)

Because the existence of both ( ~xc1, ~yc1) and ( ~xc2, ~yc2) are equivalent
to the existence ofRSL, the necessary and sufficient condition for the
existence of RSL is�������������������������������������������������������

�afl � a0r�2 � �bfl � b0r�2
q

� 2
 cos �̂

On the other hand, it is trivial to show that �20 � �20 � �2f � �2f � 
2
holds if

�������������������������������������������������������
�afl � a0r�2 � �bfl � b0r�2

q
� 2
 cos �̂

In this case, the length of S, which is given by

�������������������������������������������������������
� ~xc2 � ~xc1�2 � � ~yc2 � ~yc1�2

p
becomes zero. Consequently, RSL� RS0L holds at the boundary.
By permuting R and L, the same arguments hold for LSR.

Lemma 3: If

��������������������������������������������������������
�afr � a0r�2 � �bfr � b0r�2

q
� 4
 cos �̂

at least one of the paths in the set fRSR;LSL; RSL; LSR;LR�Lg
(�
 � � � 2�
) is shorter than RL�
R. If������������������������������������������������������

�afl � a0l�2 � �bfl � b0l�2
q

� 4
 cos �̂

at least one of the paths in fRSR;LSL; RSL;LSR;RL�Rg is shorter
than LR�
L.

Proof: Consider the case of

��������������������������������������������������������
�afr � a0r�2 � �bfr � b0r�2

q
� 4
 cos �̂

Without loss of generality, it is possible to choose �a0r; b0r� � �0; 0�
and �afr; bfr� � �4
 cos �̂; 0�. Then, by introducing �0 and �f, as
illustrated in Fig. 5,

�a0l; b0l� � �2
 cos �̂ cos�0; 2
 cos �̂ sin�0�

and

�afl; bfl� � �4
 cos �̂� 2
 cos �̂ cos�f; 2
 cos �̂ sin�f�

hold. Note that �0 and �f are independent of �̂ and are given as
�0 �  0 � �=2 and �f �  f � �=2, respectively. The length of
each path can then be calculated as follows:

l�RL�
R� � 
fM�2� � �0� � ��M��f � ��g (67)

l�RSR� � 
fM�3�=2 � �0� � 4 cos �̂�M��f � 3�=2�g (68)

4ρ βcos

R
L

R

L

L

initial waypoint

terminal waypoint

x

y

β

χ0

χf

β

β

β

Fig. 5 Circular arcs in the case of

���������������������������������������������������
�afr � a0r�

2 � bfr � b0r�
2

q
�

4� cos �̂.
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l�RSL�

� 
fM��m1 � �0� � 4 cos �̂
����������������������
1� cos�f

p
�M��m1 � � � �f�g

(69)

l�LSR�

�
fM��0����m2��4cos �̂
���������������������
1� cos�0

p
�M��f��m2���g

(70)

l�LSL� � 
fM��0 � � � �m3�

� 2 cos �̂
�����������������������������������������������������������������������������������
6 � 2 cos��f � �0� � 4 cos�f � 4 cos�0

q
�M��m3 � �f�g (71)

l�LRL�
� 
fM��0 � � � �m4� �M��m5 � �m4� �M��m5 � � � �f�g

(72)

where

�m1 ≜ tan�1
�

sin�f
2� cos�f

�
� cos�1

�
1��������������������������

5� 4 cos�f
p �

(73)

�m2 ≜ �tan�1
�

sin�0

2 � cos�0

�
� cos�1

�
1�������������������������

5 � 4 cos�0

p
�

(74)

�m3 ≜ tan�1
�

sin�f � sin�0

2� cos�f � cos�0

�
� �

2
(75)

�m4 ≜ tan�1	f�sin�f � sin�0�
� �2� cos�f � cos�0��g=f�2� cos�f � cos�0�

 �sin�f � sin�0��g
 (76)

�m5 ≜ tan�1	f�sin�0 � sin�f� � �2� cos�f

� cos�0��g=f�cos�0 � 2 � cos�f� 
 �sin�f � sin�0��g

(77)

� �
��������������������������������������������������������������������������������������������

1

6 � 2 cos��f � �0� � 4 cos�f � 4 cos�0

� 1

4

s
(78)

Note that �m1; . . . ; �m5 are independent of �̂. Because l�RL�
R�,
l�RSR�j�̂�0, l�RSL�j�̂�0, l�LSR�j�̂�0, l�LSL�j�̂�0, and l�LRL� are
independent of �̂, the problem of finding the shortest length among
these is equivalent to finding the shortest Dubins path. In [6], it was
proven thatRL�
R cannot be the shortestDubins path.Hence, at least
one of

fl�RSR�j�̂�0; l�RSL�j�̂�0; l�LSR�j�̂�0; l�LSL�j�̂�0; l�LRL�g

is shorter than l�RL�
R�. In addition, l�RSR� � l�RSR�j�̂�0,
l�RSL� � l�RSL�j�̂�0, l�LSR� � l�LSR�j�̂�0, and l�LSL� �
l�LSL�j�̂�0 hold, because j�̂j � 1. Therefore, at least one of

fl�RSR�; l�RSL�; l�LSR�; l�LSL�; l�LRL�g

is shorter than D�RL�
R�. By permuting R and L, the same
arguments hold for the case of������������������������������������������������������

�afl � a0l�2 � �bfl � b0l�2
q

� 4
 cos �̂

Lemma 4: Tp�0� � Tvt�0� � 0 holds. In addition, Tp�d� �
Tvt�d�< 0 holds for sufficiently large d.

Proof: From Eq. (55), Tvt�0� � 0 holds. If �x0; y0;  0� ≠
�xf; yf;  f�, a positivefinite time is required for the vehicle to change
its state from �x0; y0;  0� to

�xf � wxTvt�0�; yf � wyTvt�0�;  f� � �xf; yf;  f�

in the air mass frame [i.e., Tp�0�> 0 holds]. If �x0; y0;  0��
�xf; yf;  f�, then Tp�0� � 0 holds. Therefore, Tp�0� � Tvt�0� �
Tp�0� � 0 holds. On the other hand, if d is sufficiently large, neither��������������������������������������������������������

�afr � a0r�2 � �bfr � b0r�2
q

� 4
 cos �̂

nor ������������������������������������������������������
�afl � a0l�2 � �bfl � b0l�2

q
� 4
 cos �̂

hold. Then, from Lemma 1, only RSR, LSL, RSL, and LSR
exist among the eight candidate paths. As d becomes larger, the
length of the line segment S accounts for themajority of the length of
each of the four paths. In other words, Tp�d� of each of the four
paths approaches d=V as d becomes larger. From Eq. (55) and
Assumption 1,

Tvt�d� � d=
������������������
w2
x � w2

y

q
> d=V

Consequently, Tp�d� � Tvt�d�< 0 holds for sufficiently large d.
Lemma 5: The length of the shortest path chosen from the set

fRSR;LSL;RSL; LSR;RL�R;RL�R; LR�L; LR�Lg

is continuous with respect to d, except at the boundary of the
existence of RSL or LSR: that is,�������������������������������������������������������

�afl � a0r�2 � �bfl � b0r�2
q

� 2
 cos �̂

or �������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

Proof: Discontinuities of each path may occur 1) at the singular
points at which the path includes any ofR0, L0,R2�
,L2�
, and S0 or
2) at the boundaries of the path existence described by Lemmas 1 and
2. At the singular points corresponding toR0SR,RSR0,R0SL,LSR0,
RS0R, and RL0R, the shortest path type changes in the following
manner as d increases:

1) R"SR! R0SR� L0SR! L"SR.
2) RSR"0 ! RSR0 � RSL0 ! RSL"0.
3) R"SL! R0SL� L0SL! L"SL.
4) LSR" ! LSR0 � LSL0 ! LSL".
5) RS"1R! R
S0R� � L0R
��L0 ! L"2R
���"4L"3.
6) RL"1R! R
L0R� � L0R
��L0 ! L"2R
���"4L"3.

where the notation ! denotes a slight change in the length of the
selected path in concert with a slight increase in d, and the notation�
denotes a change in the selected path to another path of the same
length. As an example, the change in the path types in item 2 is shown
in Fig. 6. Thus, the discontinuity of the shortest path length at these
singular points does not occur. In addition, the shortest path does not
encounter the singular points corresponding to R2�
SR, RSR2�
,
R2�
SL, LSR2�
, or RL2�
R. This is because these paths can be
shortened further by replacing R2�
 or L2�
 with R0 or L0,

1538 YOKOYAMA AND OCHI



respectively, and, based on items 1–4 and 6, these shortened paths
change continuously as d increases. By permuting R and L of the
preceding arguments, the discontinuity of the shortest path can be
confirmed to not occur at the singular points corresponding to L0SL,
LSL0, L0SR, RSL0, LS0L, LR0L, L2�
SL, LSL2�
, L2�
SR,
RSL2�
, orLR2�
L.Moreover, fromLemmas 1 and 3, neitherRL�
R
nor LR�
L, which exist in the case of��������������������������������������������������������

�afr � a0r�2 � �bfr � b0r�2
q

� 4
 cos �̂

or ������������������������������������������������������
�afl � a0l�2 � �bfl � b0l�2

q
� 4
 cos �̂

is the shortest path. Therefore, discontinuity of the shortest path at
these boundaries does not occur. On the other hand,�������������������������������������������������������

�afl � a0r�2 � �bfl � b0r�2
q

� 2
 cos �̂

or �������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

holds at the singular points corresponding to R0LR, RLR0, L0RL,
LRL0, R2�
LR, RLR2�
, L2�
RL, and LRL2�
 as well as RS0L and
LS0R. In these cases, feasible path changes, such as items 1–6, do not
necessarily exist, and hence discontinuities may occur.

Lemma 6: Let us consider the case in which the sequence of the
shortest paths with d increasing from zero passes through either�������������������������������������������������������

�afl � a0r�2 � �bfl � b0r�2
q

� 2
 cos �̂

or �������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

and the following discontinuity occurs: Tp�d� � Tvt�d�> 0 before
passing the boundary andTp�d� � Tvt�d�< 0 after passing the boun-
dary. In this case, one of the paths in the set fRL�R;RL�R;
LR�L; LR�Lg satisfies Tp�d� � Tvt�d� � 0 at some d.

Proof: Let us consider the case of�������������������������������������������������������
�afl � a0r�2 � �bfl � b0r�2

q
� 2
 cos �̂

Before passing the boundary, Tp�d� � Tvt�d�> 0 holds in the cases
of both RL�R and RL�R. After passing the boundary, Tp�d� �
Tvt�d�< 0 holds in the case of either RL�R0 or RL�R0 because the
discontinuous decrease of the length will occur in either one of the
two paths (i.e., RL�R2�
 ! RL��"R0 or RL�R2�
 ! RL��"R0). On
the other hand, Tp�d� � Tvt�d�> 0 still holds in the rest of the paths
after passing the boundary. As d increases further, RL�R and RL�R
become identical (i.e., RL�
R) at��������������������������������������������������������

�afr � a0r�2 � �bfr � b0r�2
q

� 4
 cos �̂

This signifies that Tp�d� � Tvt�d� of either RL�R or RL�R crosses
zero. By permuting R and L of the preceding arguments, Tp�d� �
Tvt�d� of either LR�L or LR�L crosses zero when

�������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

Based on the preceding lemmas, the proof of Proposition 1 can be
given as follows:

Proof of Proposition 1: From Lemma 5, if the sequence of the
shortest paths in the set

fRSR;LSL;RSL; LSR;RL�R;RL�R; LR�L; LR�Lg

passes through neither

�������������������������������������������������������
�afl � a0r�2 � �bfl � b0r�2

q
� 2
 cos �̂

nor �������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

thenTp�d� � Tvt�d� is continuous. Then, fromLemma 3, the shortest
path satisfies Tp�d� � Tvt�d� � 0 at some d. If the sequence of the
shortest paths passes through

�������������������������������������������������������
�afl � a0r�2 � �bfl � b0r�2

q
� 2
 cos �̂

or �������������������������������������������������������
�afr � a0l�2 � �bfr � b0l�2

q
� 2
 cos �̂

and Tp�d� � Tvt�d�> 0 holds in the shortest path after passing the
boundary, the shortest path still satisfies Tp�d� � Tvt�d� � 0 at some
d due to the continuity of the subsequent sequence of the shortest
paths. If the case considered in Lemma 6 occurs, one of the paths in
the set fRL�R;RL�R; LR�L; LR�Lg (which is not necessarily the
shortest path) satisfies Tp�d� � Tvt�d� � 0 at some d. Therefore, at
least one of the paths in the set

fRSR;LSL;RSL; LSR;RL�R;RL�R; LR�L; LR�Lg

satisfies Tp�d� � Tvt�d� � 0 at some d, and hence the interception of
the virtual target is achieved.

Although the preceding discussion does not cover the case in

which
������������������
w2
x �w2

y

q
� 0 (the no-wind case) due to Assumption 1, the

eight candidate inertial paths in this case can be readily calculated
without considering the interception problem (Tp�d� � Tvt�d� � 0).
The fast path calculation algorithm can then be described as follows:

Step 1: If 0<
������������������
w2
x � w2

y

q
< V, find theminimum root of fTp�d� �

Tvt�d� � 0; d � 0g with respect to each of the eight candidate air
mass frame paths:

current terminal waypoint
initial waypoint

trace of terminal waypoint

Fig. 6 Example of the change of path type from RSR to RSL as d increases.
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fRSR;LSL; RSL;LSR; RL�R;RL�R; LR�L; LR�Lg

where �
 � � � 2�
; 0 � � � �
. In our implementation, the
algorithm by Brent [23] is adopted for finding the root. If������������������
w2
x �w2

y

q
� 0, find the shortest of the eight candidate inertial paths

and terminate the algorithm.
Step 2: Choose theminimum root among those found in step 1 and

the corresponding path type.
Step 3: Modify the path chosen in step 2 by a transformation from

the air mass frame � ~x�t�; ~y�t�� to the inertial frame �x�t�; y�t�� as
follows:

x�t� � ~x�t� �wxt; y�t� � ~y�t� �wyt (79)

Then terminate the algorithm.
The convergence of the algorithm is guaranteed because

Proposition 1 guarantees that at least one of the eight root-finding
processes carried out in step 1 will find a solution. Note that the
domains of d are bounded for some paths. For clarity, let
�afr�0�; bfr�0�� and �afl�0�; bfl�0�� be the centers of the terminal
circular arcs at d� 0. The condition of the existence of RSL can be
described as follows:

�����������������������������������������������������������������������������������������������������������������������������
�afl�0� �

wxd������������������
w2
x �w2

y

q � a0r�2 � �bfl�0� �
wyd������������������
w2
x � w2

y

q � b0r�2
vuut
� 2
 cos �̂ (80)

This is equivalent to the following quadratic inequality:

d2 � 2fwx�afl�0� � a0r� � wy�bfl�0� � b0r�gd=
������������������
w2
x �w2

y

q
� f�afl�0� � a0r�2 � �bfl�0� � b0r� � 4
2cos2�̂g � 0 (81)

If the discriminant of the left-hand side of Eq. (81) is less than or
equal to zero, the domain for finding the root is d � 0. Otherwise, the
domain for finding the root is the solution to Eq. (80) and d � 0.
Similarly, the condition of the existence of RL�R and RL�R can be
described by the following inequality:

d2 � 2fwx�afr�0� � a0r� � wy�bfr�0� � b0r�gd=
������������������
w2
x � w2

y

q
� f�afr�0� � a0r�2 � �bfr�0� � b0r� � 16
2cos2�̂g � 0 (82)

Then the domain for finding the root is the solution to Eq. (82) and
d � 0. By permuting R and L, the same arguments hold for LSR,
LR�L, and LR�L.

Numerical Examples

Because the fast algorithm described in the previous section has
guaranteed convergence under certain assumptions, it may be
applicable to online path planning for airborne application if the
computational speed is practical. However, the paths calculated by
the fast algorithm are achieved by bang–bang controls, whereas the
optimal paths calculated by the rigorous algorithm are generally
achieved by continuous controls. Thus, in this section, the quality
and the computational speed of the fast algorithm, together with the
reliability of the convergence, are examined through numerical
examples. The performance parameters in the path planning are
V � 10 m=s, a � 1 1=s, a� ��1, and �rmax � �=18 rad; these
values, determined arbitrarily, are used in all the numerical
simulations.

First, we consider the following four sets of boundary conditions
and wind vectors.

Case 1:
�x0; y0;  0� � �0; 0; 0�; �xf; yf;  f� �
�100; 0; 0�; 	wx wy
T � 	0 � 5
T

Case 2:
�x0; y0;  0� � �0; 0; 0�; �xf; yf;  f� �
�100; 0; 0�; 	wx wy
T � 	0 � 3
T

Case 3:
�x0; y0;  0� � �0; 0; 0�; �xf; yf;  f� �
�100; 100; �=2�; 	wx wy
T � 	�2 � 0
T

Case 4:
�x0; y0;  0� � �0; 0; 0�; �xf; yf;  f� �
�100;�100;��=4�; 	wx wy
T � 	�2 � 4
T

Both the fast algorithm and the rigorous algorithm were run for
each case. It took some time and effort to calculate the optimal paths
by the rigorous algorithm, because initial guesses of 	x, 	y, 	 0, and
te were given by trial and error. The paths calculated by both
algorithms are shown in Figs. 7–10. The types of the resulting paths
calculated by the fast algorithm were RL�R in case 1, RSL in case 2,
RSR in case 3, and LR�L in case 4. Symmetric changes of both the
terminal conditions and the wind vectors with respect to the x axis in
these cases would produce the path types LR�L, LSR, LSL, and
RL�R. Thus, it can be confirmed that each of the eight candidate paths
in Proposition 1 can be adopted in the running of the fast algorithm.
Table 1 shows the total elapsed times of the paths as well as the
differences between these times. As shown in Figs. 7–9, the time
histories of �r for the fast algorithm approximated those of the
rigorous algorithm. In these cases, the differences in elapsed times
between the fast algorithm and the rigorous algorithm were
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Fig. 7 Paths for case 1 calculated by the fast algorithm and the rigorous algorithm.
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negligible. Thus, the paths of the fast algorithm in these cases exhibit
sufficient quasi-optimality. On the other hand, in case 4, the path as
calculated by the fast algorithm was clearly different from that of the
rigorous algorithm, as shown in Fig. 10. Nevertheless, the increase in
the total elapsed time of the path calculated by the fast algorithmwas
still admissible because it was approximately 3% of the total time of
the optimal path.

By setting a� � 0 in the fast algorithm, we also calculated the
Dubins paths under the constant wind conditions. Figure 11 shows
comparisons between theDubins paths (a� � 0) and paths calculated
by the rigorous algorithm (a� ≠ 0). The differences of the paths are
significant, and hence we can confirm the importance of using the

skid-to-turnmodel (a� ≠ 0) as opposed to the simpler Dubinsmodel
(a� � 0).

Next, we executed 106 random runs of the fast algorithm to check
the computational speed and reliability of the convergence. In these
random runs, the initial conditionwasfixed to �x0; y0;  0� � �0; 0; 0�
without loss of generality. The terminal condition and the wind
vector were given as follows:

xf� 500� 1000z1; yf � 500� 1000z2;  f� 2�z3

wx� 9:5z4 cos�2�z5�; wy� 9:5z4 sin�2�z5� (83)
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Fig. 8 Paths for case 2 calculated by the fast algorithm and the rigorous algorithm.
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Fig. 9 Paths for case 3 calculated by the fast algorithm and the rigorous algorithm.
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Fig. 10 Paths for case 4 calculated by the fast algorithm and the rigorous algorithm.
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where z1; . . . ; z5 are independent uniform random numbers within
the domain of �0; 1�. The fast algorithm successfully found the
feasible paths in all of the 106 random runs. This demonstrates
the guaranteed convergence of the fast algorithm. For all of the
random runs, we used a desktop computer equipped with an Intel
Core-2 Duo 2.4 GHz processor. Table 2 shows the statistics of the
computational time. The maximum computational time was far
less than 1 ms. On the other hand, the admissible time for
onboard computation of the path planning would be more than
1 s when it is used for navigation of UAVs. Therefore, it would
be possible to implement the fast algorithm even if a less capable
onboard processor was installed in the vehicle and other computa-
tional processes required extra computational time.

Conclusions

In this study, two types of path planning algorithmswere described
for skid-to-turn UAVs, both of which calculate paths between two
waypoints under constant wind conditions. One is a rigorous
optimization algorithm based on the Euler–Lagrange formulation
with analytical integration of the path. The other is a fast algorithm
describing the path by two circular arcs connected by a line segment
or another circular arc in the air mass frame, similar to the Dubins
path. We compared the qualities of the paths calculated by the fast
algorithm with those calculated by the rigorous optimization
algorithm. In the sense of time minimization, the quasi-optimality of
the paths calculated by the fast algorithm was observed. We also
presented the convergence proof of the fast algorithm and confirmed
its fast computational speed as well as the 100% convergence
characteristics by running the fast algorithm in an extensive range of
situations. These results indicate the potential and the effectiveness
of the fast algorithm as an airborne path planner.

Proposed areas for future study include an investigation into the
actual implementation of the fast algorithm on the onboard computer
of a skid-to-turn UAVand the extension of the algorithm to paths in
which the airspeed and altitude change.
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